Mercurial > crates > nonstick
view src/libpam/memory.rs @ 87:05291b601f0a
Well and truly separate the Linux extensions.
This separates the Linux extensions on the libpam side,
and disables the two enums on the interface side.
Users can still call the Linux extensions from non-Linux PAM impls,
but they'll get a conversation error back.
author | Paul Fisher <paul@pfish.zone> |
---|---|
date | Tue, 10 Jun 2025 04:40:01 -0400 |
parents | 5aa1a010f1e8 |
children |
line wrap: on
line source
//! Things for dealing with memory. use crate::Result; use crate::{BinaryData, ErrorCode}; use std::ffi::{c_char, CStr, CString}; use std::marker::{PhantomData, PhantomPinned}; use std::{ptr, slice}; /// Allocates `count` elements to hold `T`. #[inline] pub fn calloc<T>(count: usize) -> *mut T { // SAFETY: it's always safe to allocate! Leaking memory is fun! unsafe { libc::calloc(count, size_of::<T>()) }.cast() } /// Wrapper for [`libc::free`] to make debugging calls/frees easier. /// /// # Safety /// /// If you double-free, it's all your fault. #[inline] pub unsafe fn free<T>(p: *mut T) { libc::free(p.cast()) } /// Makes whatever it's in not [`Send`], [`Sync`], or [`Unpin`]. #[repr(C)] #[derive(Debug, Default)] pub struct Immovable(pub PhantomData<(*mut u8, PhantomPinned)>); /// Safely converts a `&str` option to a `CString` option. pub fn option_cstr(prompt: Option<&str>) -> Result<Option<CString>> { prompt .map(CString::new) .transpose() .map_err(|_| ErrorCode::ConversationError) } /// Gets the pointer to the given CString, or a null pointer if absent. pub fn prompt_ptr(prompt: Option<&CString>) -> *const c_char { match prompt { Some(c_str) => c_str.as_ptr(), None => ptr::null(), } } /// Creates an owned copy of a string that is returned from a /// <code>pam_get_<var>whatever</var></code> function. /// /// # Safety /// /// It's on you to provide a valid string. pub unsafe fn copy_pam_string(result_ptr: *const libc::c_char) -> Result<String> { // We really shouldn't get a null pointer back here, but if we do, return nothing. if result_ptr.is_null() { return Ok(String::new()); } let bytes = unsafe { CStr::from_ptr(result_ptr) }; bytes .to_str() .map(String::from) .map_err(|_| ErrorCode::ConversationError) } /// Wraps a string returned from PAM as an `Option<&str>`. pub unsafe fn wrap_string<'a>(data: *const libc::c_char) -> Result<Option<&'a str>> { let ret = if data.is_null() { None } else { Some( CStr::from_ptr(data) .to_str() .map_err(|_| ErrorCode::ConversationError)?, ) }; Ok(ret) } /// Allocates a string with the given contents on the C heap. /// /// This is like [`CString::new`], but: /// /// - it allocates data on the C heap with [`libc::malloc`]. /// - it doesn't take ownership of the data passed in. pub fn malloc_str(text: &str) -> Result<*mut c_char> { let data = text.as_bytes(); if data.contains(&0) { return Err(ErrorCode::ConversationError); } // +1 for the null terminator let data_alloc: *mut c_char = calloc(data.len() + 1); // SAFETY: we just allocated this and we have enough room. unsafe { libc::memcpy(data_alloc.cast(), data.as_ptr().cast(), data.len()); } Ok(data_alloc) } /// Writes zeroes over the contents of a C string. /// /// This won't overwrite a null pointer. /// /// # Safety /// /// It's up to you to provide a valid C string. pub unsafe fn zero_c_string(cstr: *mut c_char) { if !cstr.is_null() { libc::memset(cstr.cast(), 0, libc::strlen(cstr.cast())); } } /// Binary data used in requests and responses. /// /// This is an unsized data type whose memory goes beyond its data. /// This must be allocated on the C heap. /// /// A Linux-PAM extension. #[repr(C)] pub struct CBinaryData { /// The total length of the structure; a u32 in network byte order (BE). total_length: [u8; 4], /// A tag of undefined meaning. data_type: u8, /// Pointer to an array of length [`length`](Self::length) − 5 data: [u8; 0], _marker: Immovable, } impl CBinaryData { /// Copies the given data to a new BinaryData on the heap. pub fn alloc((data, data_type): (&[u8], u8)) -> Result<*mut CBinaryData> { let buffer_size = u32::try_from(data.len() + 5).map_err(|_| ErrorCode::ConversationError)?; // SAFETY: We're only allocating here. let dest = unsafe { let dest_buffer: *mut CBinaryData = calloc::<u8>(buffer_size as usize).cast(); let dest = &mut *dest_buffer; dest.total_length = buffer_size.to_be_bytes(); dest.data_type = data_type; let dest = dest.data.as_mut_ptr(); libc::memcpy(dest.cast(), data.as_ptr().cast(), data.len()); dest_buffer }; Ok(dest) } fn length(&self) -> usize { u32::from_be_bytes(self.total_length).saturating_sub(5) as usize } /// Clears this data and frees it. pub unsafe fn zero_contents(&mut self) { let contents = slice::from_raw_parts_mut(self.data.as_mut_ptr(), self.length()); for v in contents { *v = 0 } self.data_type = 0; self.total_length = [0; 4]; } } impl<'a> From<&'a CBinaryData> for (&'a [u8], u8) { fn from(value: &'a CBinaryData) -> Self { ( unsafe { slice::from_raw_parts(value.data.as_ptr(), value.length()) }, value.data_type, ) } } impl From<&'_ CBinaryData> for BinaryData { fn from(value: &'_ CBinaryData) -> Self { // This is a dumb trick but I like it because it is simply the presence // of `.map(|z: (_, _)| z)` in the middle of this that gives // type inference the hint it needs to make this work. let [ret] = [value].map(Into::into).map(|z: (_, _)| z).map(Into::into); ret } } impl From<Option<&'_ CBinaryData>> for BinaryData { fn from(value: Option<&CBinaryData>) -> Self { value.map(Into::into).unwrap_or_default() } } #[cfg(test)] mod tests { use super::{ copy_pam_string, free, malloc_str, option_cstr, prompt_ptr, zero_c_string, CString, ErrorCode, }; #[test] fn test_strings() { let str = malloc_str("hello there").unwrap(); malloc_str("hell\0 there").unwrap_err(); unsafe { let copied = copy_pam_string(str).unwrap(); assert_eq!("hello there", copied); zero_c_string(str); let idx_three = str.add(3).as_mut().unwrap(); *idx_three = 0x80u8 as i8; let zeroed = copy_pam_string(str).unwrap(); assert!(zeroed.is_empty()); free(str); } } #[test] fn test_option_str() { let good = option_cstr(Some("whatever")).unwrap(); assert_eq!("whatever", good.unwrap().to_str().unwrap()); let no_str = option_cstr(None).unwrap(); assert!(no_str.is_none()); let bad_str = option_cstr(Some("what\0ever")).unwrap_err(); assert_eq!(ErrorCode::ConversationError, bad_str); } #[test] fn test_prompt() { let prompt_cstr = CString::new("good").ok(); let prompt = prompt_ptr(prompt_cstr.as_ref()); assert!(!prompt.is_null()); let no_prompt = prompt_ptr(None); assert!(no_prompt.is_null()); } }