Mercurial > crates > nonstick
comparison libpam-sys/libpam-sys-helpers/src/memory.rs @ 136:efbc235f01d3
Separate libpam-sys-helpers from libpam-sys.
This separates the parts of libpam-sys that don't need linking against libpam
from the parts that do need to link against libpam.
author | Paul Fisher <paul@pfish.zone> |
---|---|
date | Thu, 03 Jul 2025 14:28:04 -0400 |
parents | libpam-sys/src/helpers.rs@6c1e1bdb4164 |
children |
comparison
equal
deleted
inserted
replaced
135:b52594841480 | 136:efbc235f01d3 |
---|---|
1 //! Helpers to deal with annoying memory management in the PAM API. | |
2 //! | |
3 //! | |
4 | |
5 use std::error::Error; | |
6 use std::marker::{PhantomData, PhantomPinned}; | |
7 use std::mem::ManuallyDrop; | |
8 use std::ptr::NonNull; | |
9 use std::{any, fmt, mem, slice}; | |
10 | |
11 /// A pointer-to-pointer-to-message container for PAM's conversation callback. | |
12 /// | |
13 /// The PAM conversation callback requires a pointer to a pointer of | |
14 /// `pam_message`s. Linux-PAM handles this differently than all other | |
15 /// PAM implementations (including the X/SSO PAM standard). | |
16 /// | |
17 /// X/SSO appears to specify a pointer-to-pointer-to-array: | |
18 /// | |
19 /// ```text | |
20 /// points to ┌────────────┐ ╔═ Message[] ═╗ | |
21 /// messages ┄┄┄┄┄┄┄┄┄┄> │ *messages ┄┼┄┄┄┄┄> ║ style ║ | |
22 /// └────────────┘ ║ data ┄┄┄┄┄┄┄╫┄┄> ... | |
23 /// ╟─────────────╢ | |
24 /// ║ style ║ | |
25 /// ║ data ┄┄┄┄┄┄┄╫┄┄> ... | |
26 /// ╟─────────────╢ | |
27 /// ║ ... ║ | |
28 /// ``` | |
29 /// | |
30 /// whereas Linux-PAM uses an `**argv`-style pointer-to-array-of-pointers: | |
31 /// | |
32 /// ```text | |
33 /// points to ┌──────────────┐ ╔═ Message ═╗ | |
34 /// messages ┄┄┄┄┄┄┄┄┄┄> │ messages[0] ┄┼┄┄┄┄> ║ style ║ | |
35 /// │ messages[1] ┄┼┄┄┄╮ ║ data ┄┄┄┄┄╫┄┄> ... | |
36 /// │ ... │ ┆ ╚═══════════╝ | |
37 /// ┆ | |
38 /// ┆ ╔═ Message ═╗ | |
39 /// ╰┄┄> ║ style ║ | |
40 /// ║ data ┄┄┄┄┄╫┄┄> ... | |
41 /// ╚═══════════╝ | |
42 /// ``` | |
43 /// | |
44 /// Because the `messages` remain owned by the application which calls into PAM, | |
45 /// we can solve this with One Simple Trick: make the intermediate list point | |
46 /// into the same array: | |
47 /// | |
48 /// ```text | |
49 /// points to ┌──────────────┐ ╔═ Message[] ═╗ | |
50 /// messages ┄┄┄┄┄┄┄┄┄┄> │ messages[0] ┄┼┄┄┄┄> ║ style ║ | |
51 /// │ messages[1] ┄┼┄┄╮ ║ data ┄┄┄┄┄┄┄╫┄┄> ... | |
52 /// │ ... │ ┆ ╟─────────────╢ | |
53 /// ╰┄> ║ style ║ | |
54 /// ║ data ┄┄┄┄┄┄┄╫┄┄> ... | |
55 /// ╟─────────────╢ | |
56 /// ║ ... ║ | |
57 /// | |
58 /// ``` | |
59 #[derive(Debug)] | |
60 pub struct PtrPtrVec<T> { | |
61 data: Vec<T>, | |
62 pointers: Vec<*const T>, | |
63 } | |
64 | |
65 // Since this is a wrapper around a Vec with no dangerous functionality*, | |
66 // this can be Send and Sync provided the original Vec is. | |
67 // | |
68 // * It will only become unsafe when the user dereferences a pointer or sends it | |
69 // to an unsafe function. | |
70 unsafe impl<T> Send for PtrPtrVec<T> where Vec<T>: Send {} | |
71 unsafe impl<T> Sync for PtrPtrVec<T> where Vec<T>: Sync {} | |
72 | |
73 impl<T> PtrPtrVec<T> { | |
74 /// Takes ownership of the given Vec and creates a vec of pointers to it. | |
75 pub fn new(data: Vec<T>) -> Self { | |
76 let pointers: Vec<_> = data.iter().map(|r| r as *const T).collect(); | |
77 Self { data, pointers } | |
78 } | |
79 | |
80 /// Gives you back your Vec. | |
81 pub fn into_inner(self) -> Vec<T> { | |
82 self.data | |
83 } | |
84 | |
85 /// Gets a pointer-to-pointer suitable for passing into the Conversation. | |
86 pub fn as_ptr<Dest>(&self) -> *const *const Dest { | |
87 Self::assert_size::<Dest>(); | |
88 self.pointers.as_ptr().cast::<*const Dest>() | |
89 } | |
90 | |
91 /// Iterates over a Linux-PAM–style pointer-to-array-of-pointers. | |
92 /// | |
93 /// # Safety | |
94 /// | |
95 /// `ptr_ptr` must be a valid pointer to an array of pointers, | |
96 /// there must be at least `count` valid pointers in the array, | |
97 /// and each pointer in that array must point to a valid `T`. | |
98 #[deprecated = "use [`Self::iter_over`] instead, unless you really need this specific version"] | |
99 #[allow(dead_code)] | |
100 pub unsafe fn iter_over_linux<'a, Src>( | |
101 ptr_ptr: *const *const Src, | |
102 count: usize, | |
103 ) -> impl Iterator<Item = &'a T> | |
104 where | |
105 T: 'a, | |
106 { | |
107 Self::assert_size::<Src>(); | |
108 slice::from_raw_parts(ptr_ptr.cast::<&T>(), count) | |
109 .iter() | |
110 .copied() | |
111 } | |
112 | |
113 /// Iterates over an X/SSO–style pointer-to-pointer-to-array. | |
114 /// | |
115 /// # Safety | |
116 /// | |
117 /// You must pass a valid pointer to a valid pointer to an array, | |
118 /// there must be at least `count` elements in the array, | |
119 /// and each value in that array must be a valid `T`. | |
120 #[deprecated = "use [`Self::iter_over`] instead, unless you really need this specific version"] | |
121 #[allow(dead_code)] | |
122 pub unsafe fn iter_over_xsso<'a, Src>( | |
123 ptr_ptr: *const *const Src, | |
124 count: usize, | |
125 ) -> impl Iterator<Item = &'a T> | |
126 where | |
127 T: 'a, | |
128 { | |
129 Self::assert_size::<Src>(); | |
130 slice::from_raw_parts(*ptr_ptr.cast(), count).iter() | |
131 } | |
132 | |
133 /// Iterates over a PAM message list appropriate to your system's impl. | |
134 /// | |
135 /// This selects the correct pointer/array structure to use for a message | |
136 /// that was given to you by your system. | |
137 /// | |
138 /// # Safety | |
139 /// | |
140 /// `ptr_ptr` must point to a valid message list, there must be at least | |
141 /// `count` messages in the list, and all messages must be a valid `Src`. | |
142 #[allow(deprecated)] | |
143 pub unsafe fn iter_over<'a, Src>( | |
144 ptr_ptr: *const *const Src, | |
145 count: usize, | |
146 ) -> impl Iterator<Item = &'a T> | |
147 where | |
148 T: 'a, | |
149 { | |
150 #[cfg(pam_impl = "LinuxPam")] | |
151 return Self::iter_over_linux(ptr_ptr, count); | |
152 #[cfg(not(pam_impl = "LinuxPam"))] | |
153 return Self::iter_over_xsso(ptr_ptr, count); | |
154 } | |
155 | |
156 fn assert_size<That>() { | |
157 debug_assert_eq!( | |
158 mem::size_of::<T>(), | |
159 mem::size_of::<That>(), | |
160 "type {t} is not the size of {that}", | |
161 t = any::type_name::<T>(), | |
162 that = any::type_name::<That>(), | |
163 ); | |
164 } | |
165 } | |
166 | |
167 /// Error returned when attempting to allocate a buffer that is too big. | |
168 /// | |
169 /// This is specifically used in [`OwnedBinaryPayload`] when you try to allocate | |
170 /// a message larger than 2<sup>32</sup> bytes. | |
171 #[derive(Debug, PartialEq)] | |
172 pub struct TooBigError { | |
173 pub size: usize, | |
174 pub max: usize, | |
175 } | |
176 | |
177 impl Error for TooBigError {} | |
178 | |
179 impl fmt::Display for TooBigError { | |
180 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | |
181 write!( | |
182 f, | |
183 "can't allocate a message of {size} bytes (max {max})", | |
184 size = self.size, | |
185 max = self.max | |
186 ) | |
187 } | |
188 } | |
189 | |
190 /// A trait wrapping memory management. | |
191 /// | |
192 /// This is intended to allow you to bring your own allocator for | |
193 /// [`OwnedBinaryPayload`]s. | |
194 /// | |
195 /// For an implementation example, see the implementation of this trait | |
196 /// for [`Vec`]. | |
197 pub trait Buffer<T: Default> { | |
198 /// Allocates a buffer of `len` elements, filled with the default. | |
199 fn allocate(len: usize) -> Self; | |
200 | |
201 fn as_ptr(&self) -> *const T; | |
202 | |
203 /// Returns a slice view of `size` elements of the given memory. | |
204 /// | |
205 /// # Safety | |
206 /// | |
207 /// The caller must not request more elements than are allocated. | |
208 unsafe fn as_mut_slice(&mut self, len: usize) -> &mut [T]; | |
209 | |
210 /// Consumes this ownership and returns a pointer to the start of the arena. | |
211 fn into_ptr(self) -> NonNull<T>; | |
212 | |
213 /// "Adopts" the memory at the given pointer, taking it under management. | |
214 /// | |
215 /// Running the operation: | |
216 /// | |
217 /// ``` | |
218 /// # use libpam_sys_helpers::memory::Buffer; | |
219 /// # fn test<T: Default, OwnerType: Buffer<T>>(bytes: usize) { | |
220 /// let owner = OwnerType::allocate(bytes); | |
221 /// let ptr = owner.into_ptr(); | |
222 /// let owner = unsafe { OwnerType::from_ptr(ptr, bytes) }; | |
223 /// # } | |
224 /// ``` | |
225 /// | |
226 /// must be a no-op. | |
227 /// | |
228 /// # Safety | |
229 /// | |
230 /// The pointer must be valid, and the caller must provide the exact size | |
231 /// of the given arena. | |
232 unsafe fn from_ptr(ptr: NonNull<T>, bytes: usize) -> Self; | |
233 } | |
234 | |
235 impl<T: Default> Buffer<T> for Vec<T> { | |
236 fn allocate(bytes: usize) -> Self { | |
237 (0..bytes).map(|_| Default::default()).collect() | |
238 } | |
239 | |
240 fn as_ptr(&self) -> *const T { | |
241 Vec::as_ptr(self) | |
242 } | |
243 | |
244 unsafe fn as_mut_slice(&mut self, bytes: usize) -> &mut [T] { | |
245 debug_assert!(bytes <= self.len()); | |
246 Vec::as_mut(self) | |
247 } | |
248 | |
249 fn into_ptr(self) -> NonNull<T> { | |
250 let mut me = ManuallyDrop::new(self); | |
251 // SAFETY: a Vec is guaranteed to have a nonzero pointer. | |
252 unsafe { NonNull::new_unchecked(me.as_mut_ptr()) } | |
253 } | |
254 | |
255 unsafe fn from_ptr(ptr: NonNull<T>, bytes: usize) -> Self { | |
256 Vec::from_raw_parts(ptr.as_ptr(), bytes, bytes) | |
257 } | |
258 } | |
259 | |
260 /// The structure of the "binary message" payload for the `PAM_BINARY_PROMPT` | |
261 /// extension from Linux-PAM. | |
262 pub struct BinaryPayload { | |
263 /// The total byte size of the message, including this header, | |
264 /// as a u32 in network byte order (big endian). | |
265 pub total_bytes_u32be: [u8; 4], | |
266 /// A tag used to provide some kind of hint as to what the data is. | |
267 /// Its meaning is undefined. | |
268 pub data_type: u8, | |
269 /// Where the data itself would start, used as a marker to make this | |
270 /// not [`Unpin`] (since it is effectively an intrusive data structure | |
271 /// pointing to immediately after itself). | |
272 pub _marker: PhantomData<PhantomPinned>, | |
273 } | |
274 | |
275 impl BinaryPayload { | |
276 /// The most data it's possible to put into a [`BinaryPayload`]. | |
277 pub const MAX_SIZE: usize = (u32::MAX - 5) as usize; | |
278 | |
279 /// Fills in the provided buffer with the given data. | |
280 /// | |
281 /// This uses [`copy_from_slice`](slice::copy_from_slice) internally, | |
282 /// so `buf` must be exactly 5 bytes longer than `data`, or this function | |
283 /// will panic. | |
284 pub fn fill(buf: &mut [u8], data_type: u8, data: &[u8]) { | |
285 let ptr: *mut Self = buf.as_mut_ptr().cast(); | |
286 // SAFETY: We're given a slice, which always has a nonzero pointer. | |
287 let me = unsafe { ptr.as_mut().unwrap_unchecked() }; | |
288 me.total_bytes_u32be = u32::to_be_bytes(buf.len() as u32); | |
289 me.data_type = data_type; | |
290 buf[5..].copy_from_slice(data) | |
291 } | |
292 | |
293 /// The total storage needed for the message, including header. | |
294 pub fn total_bytes(&self) -> usize { | |
295 u32::from_be_bytes(self.total_bytes_u32be) as usize | |
296 } | |
297 | |
298 /// Gets the total byte buffer of the BinaryMessage stored at the pointer. | |
299 /// | |
300 /// The returned data slice is borrowed from where the pointer points to. | |
301 /// | |
302 /// # Safety | |
303 /// | |
304 /// - The pointer must point to a valid `BinaryPayload`. | |
305 /// - The borrowed data must not outlive the pointer's validity. | |
306 pub unsafe fn buffer_of<'a>(ptr: *const Self) -> &'a [u8] { | |
307 let header: &Self = ptr.as_ref().unwrap_unchecked(); | |
308 slice::from_raw_parts(ptr.cast(), header.total_bytes().max(5)) | |
309 } | |
310 | |
311 /// Gets the contents of the BinaryMessage stored at the given pointer. | |
312 /// | |
313 /// The returned data slice is borrowed from where the pointer points to. | |
314 /// This is a cheap operation and doesn't do *any* copying. | |
315 /// | |
316 /// We don't take a `&self` reference here because accessing beyond | |
317 /// the range of the `Self` data (i.e., beyond the 5 bytes of `self`) | |
318 /// is undefined behavior. Instead, you have to pass a raw pointer | |
319 /// directly to the data. | |
320 /// | |
321 /// # Safety | |
322 /// | |
323 /// - The pointer must point to a valid `BinaryPayload`. | |
324 /// - The borrowed data must not outlive the pointer's validity. | |
325 pub unsafe fn contents<'a>(ptr: *const Self) -> (u8, &'a [u8]) { | |
326 let header: &Self = ptr.as_ref().unwrap_unchecked(); | |
327 (header.data_type, &Self::buffer_of(ptr)[5..]) | |
328 } | |
329 } | |
330 | |
331 /// A binary message owned by some storage. | |
332 /// | |
333 /// This is an owned, memory-managed version of [`BinaryPayload`]. | |
334 /// The `O` type manages the memory where the payload lives. | |
335 /// [`Vec<u8>`] is one such manager and can be used when ownership | |
336 /// of the data does not need to transit through PAM. | |
337 #[derive(Debug)] | |
338 pub struct OwnedBinaryPayload<Owner: Buffer<u8>>(Owner); | |
339 | |
340 impl<O: Buffer<u8>> OwnedBinaryPayload<O> { | |
341 /// Allocates a new OwnedBinaryPayload. | |
342 /// | |
343 /// This will return a [`TooBigError`] if you try to allocate too much | |
344 /// (more than [`BinaryPayload::MAX_SIZE`]). | |
345 pub fn new(data_type: u8, data: &[u8]) -> Result<Self, TooBigError> { | |
346 let total_len: u32 = (data.len() + 5).try_into().map_err(|_| TooBigError { | |
347 size: data.len(), | |
348 max: BinaryPayload::MAX_SIZE, | |
349 })?; | |
350 let total_len = total_len as usize; | |
351 let mut buf = O::allocate(total_len); | |
352 // SAFETY: We just allocated this exact size. | |
353 BinaryPayload::fill(unsafe { buf.as_mut_slice(total_len) }, data_type, data); | |
354 Ok(Self(buf)) | |
355 } | |
356 | |
357 /// The contents of the buffer. | |
358 pub fn contents(&self) -> (u8, &[u8]) { | |
359 unsafe { BinaryPayload::contents(self.as_ptr()) } | |
360 } | |
361 | |
362 /// The total bytes needed to store this, including the header. | |
363 pub fn total_bytes(&self) -> usize { | |
364 unsafe { BinaryPayload::buffer_of(self.0.as_ptr().cast()).len() } | |
365 } | |
366 | |
367 /// Unwraps this into the raw storage backing it. | |
368 pub fn into_inner(self) -> O { | |
369 self.0 | |
370 } | |
371 | |
372 /// Gets a const pointer to the start of the message's buffer. | |
373 pub fn as_ptr(&self) -> *const BinaryPayload { | |
374 self.0.as_ptr().cast() | |
375 } | |
376 | |
377 /// Consumes ownership of this message and converts it to a raw pointer | |
378 /// to the start of the message. | |
379 /// | |
380 /// To clean this up, you should eventually pass it into [`Self::from_ptr`] | |
381 /// with the same `O` ownership type. | |
382 pub fn into_ptr(self) -> NonNull<BinaryPayload> { | |
383 self.0.into_ptr().cast() | |
384 } | |
385 | |
386 /// Takes ownership of the given pointer. | |
387 /// | |
388 /// # Safety | |
389 /// | |
390 /// You must provide a valid pointer, allocated by (or equivalent to one | |
391 /// allocated by) [`Self::new`]. For instance, passing a pointer allocated | |
392 /// by `malloc` to `OwnedBinaryPayload::<Vec<u8>>::from_ptr` is not allowed. | |
393 pub unsafe fn from_ptr(ptr: NonNull<BinaryPayload>) -> Self { | |
394 Self(O::from_ptr(ptr.cast(), ptr.as_ref().total_bytes())) | |
395 } | |
396 } | |
397 | |
398 #[cfg(test)] | |
399 mod tests { | |
400 use super::*; | |
401 use std::ptr; | |
402 | |
403 type VecPayload = OwnedBinaryPayload<Vec<u8>>; | |
404 | |
405 #[test] | |
406 fn test_binary_payload() { | |
407 let simple_message = &[0u8, 0, 0, 16, 0xff, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; | |
408 let empty = &[0u8; 5]; | |
409 | |
410 assert_eq!((0xff, &[0u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10][..]), unsafe { | |
411 BinaryPayload::contents(simple_message.as_ptr().cast()) | |
412 }); | |
413 assert_eq!((0x00, &[][..]), unsafe { | |
414 BinaryPayload::contents(empty.as_ptr().cast()) | |
415 }); | |
416 } | |
417 | |
418 #[test] | |
419 fn test_owned_binary_payload() { | |
420 let (typ, data) = ( | |
421 112, | |
422 &[0, 1, 1, 8, 9, 9, 9, 8, 8, 1, 9, 9, 9, 1, 1, 9, 7, 2, 5, 3][..], | |
423 ); | |
424 let payload = VecPayload::new(typ, data).unwrap(); | |
425 assert_eq!((typ, data), payload.contents()); | |
426 let ptr = payload.into_ptr(); | |
427 let payload = unsafe { VecPayload::from_ptr(ptr) }; | |
428 assert_eq!((typ, data), payload.contents()); | |
429 } | |
430 | |
431 #[test] | |
432 #[ignore] | |
433 fn test_owned_too_big() { | |
434 let data = vec![0xFFu8; 0x1_0000_0001]; | |
435 assert_eq!( | |
436 TooBigError { | |
437 max: 0xffff_fffa, | |
438 size: 0x1_0000_0001 | |
439 }, | |
440 VecPayload::new(5, &data).unwrap_err() | |
441 ) | |
442 } | |
443 | |
444 #[cfg(debug_assertions)] | |
445 #[test] | |
446 #[should_panic] | |
447 fn test_new_wrong_size() { | |
448 let bad_vec = vec![0; 19]; | |
449 let msg = PtrPtrVec::new(bad_vec); | |
450 let _ = msg.as_ptr::<u64>(); | |
451 } | |
452 | |
453 #[allow(deprecated)] | |
454 #[cfg(debug_assertions)] | |
455 #[test] | |
456 #[should_panic] | |
457 fn test_iter_xsso_wrong_size() { | |
458 unsafe { | |
459 let _ = PtrPtrVec::<u8>::iter_over_xsso::<f64>(ptr::null(), 1); | |
460 } | |
461 } | |
462 | |
463 #[allow(deprecated)] | |
464 #[cfg(debug_assertions)] | |
465 #[test] | |
466 #[should_panic] | |
467 fn test_iter_linux_wrong_size() { | |
468 unsafe { | |
469 let _ = PtrPtrVec::<u128>::iter_over_linux::<()>(ptr::null(), 1); | |
470 } | |
471 } | |
472 | |
473 #[allow(deprecated)] | |
474 #[test] | |
475 fn test_right_size() { | |
476 let good_vec = vec![(1u64, 2u64), (3, 4), (5, 6)]; | |
477 let ptr = good_vec.as_ptr(); | |
478 let msg = PtrPtrVec::new(good_vec); | |
479 let msg_ref: *const *const (i64, i64) = msg.as_ptr(); | |
480 assert_eq!(unsafe { *msg_ref }, ptr.cast()); | |
481 | |
482 let linux_result: Vec<(i64, i64)> = unsafe { PtrPtrVec::iter_over_linux(msg_ref, 3) } | |
483 .cloned() | |
484 .collect(); | |
485 let xsso_result: Vec<(i64, i64)> = unsafe { PtrPtrVec::iter_over_xsso(msg_ref, 3) } | |
486 .cloned() | |
487 .collect(); | |
488 assert_eq!(vec![(1, 2), (3, 4), (5, 6)], linux_result); | |
489 assert_eq!(vec![(1, 2), (3, 4), (5, 6)], xsso_result); | |
490 drop(msg) | |
491 } | |
492 | |
493 #[allow(deprecated)] | |
494 #[test] | |
495 fn test_iter_ptr_ptr() { | |
496 let strs = vec![Box::new("a"), Box::new("b"), Box::new("c"), Box::new("D")]; | |
497 let ptr: *const *const &str = strs.as_ptr().cast(); | |
498 let got: Vec<&str> = unsafe { PtrPtrVec::iter_over_linux(ptr, 4) } | |
499 .cloned() | |
500 .collect(); | |
501 assert_eq!(vec!["a", "b", "c", "D"], got); | |
502 | |
503 let nums = [-1i8, 2, 3]; | |
504 let ptr = nums.as_ptr(); | |
505 let got: Vec<u8> = unsafe { PtrPtrVec::iter_over_xsso(&ptr, 3) } | |
506 .cloned() | |
507 .collect(); | |
508 assert_eq!(vec![255, 2, 3], got); | |
509 } | |
510 } |